3.11.93 \(\int (d x)^{3/2} (a+b x^2+c x^4)^{3/2} \, dx\) [1093]

Optimal. Leaf size=148 \[ \frac {2 a (d x)^{5/2} \sqrt {a+b x^2+c x^4} F_1\left (\frac {5}{4};-\frac {3}{2},-\frac {3}{2};\frac {9}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{5 d \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \]

[Out]

2/5*a*(d*x)^(5/2)*AppellF1(5/4,-3/2,-3/2,9/4,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))*
(c*x^4+b*x^2+a)^(1/2)/d/(1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1155, 524} \begin {gather*} \frac {2 a (d x)^{5/2} \sqrt {a+b x^2+c x^4} F_1\left (\frac {5}{4};-\frac {3}{2},-\frac {3}{2};\frac {9}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{5 d \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*a*(d*x)^(5/2)*Sqrt[a + b*x^2 + c*x^4]*AppellF1[5/4, -3/2, -3/2, 9/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-
2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(5*d*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sq
rt[b^2 - 4*a*c])])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1155

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^2 +
 c*x^4)^FracPart[p]/((1 + 2*c*(x^2/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^2/(b - Rt[b^2 - 4*a*c, 2
])))^FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^2/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^2/(b - Sqrt[b^2 - 4*a*c]
)))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rubi steps

\begin {align*} \int (d x)^{3/2} \left (a+b x^2+c x^4\right )^{3/2} \, dx &=\frac {\left (a \sqrt {a+b x^2+c x^4}\right ) \int (d x)^{3/2} \left (1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}\right )^{3/2} \left (1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )^{3/2} \, dx}{\sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}}\\ &=\frac {2 a (d x)^{5/2} \sqrt {a+b x^2+c x^4} F_1\left (\frac {5}{4};-\frac {3}{2},-\frac {3}{2};\frac {9}{4};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{5 d \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(459\) vs. \(2(148)=296\).
time = 10.58, size = 459, normalized size = 3.10 \begin {gather*} \frac {2 d \sqrt {d x} \left (5 \left (-28 b^4 x^2-8 b^3 c x^4+305 b^2 c^2 x^6+480 b c^3 x^8+195 c^4 x^{10}+a^2 c \left (176 b+455 c x^2\right )+a \left (-28 b^3+196 b^2 c x^2+916 b c^2 x^4+650 c^3 x^6\right )\right )+20 a b \left (7 b^2-44 a c\right ) \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {1}{4};\frac {1}{2},\frac {1}{2};\frac {5}{4};-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{-b+\sqrt {b^2-4 a c}}\right )+4 \left (21 b^4-157 a b^2 c+260 a^2 c^2\right ) x^2 \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {5}{4};\frac {1}{2},\frac {1}{2};\frac {9}{4};-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{-b+\sqrt {b^2-4 a c}}\right )\right )}{16575 c^2 \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2),x]

[Out]

(2*d*Sqrt[d*x]*(5*(-28*b^4*x^2 - 8*b^3*c*x^4 + 305*b^2*c^2*x^6 + 480*b*c^3*x^8 + 195*c^4*x^10 + a^2*c*(176*b +
 455*c*x^2) + a*(-28*b^3 + 196*b^2*c*x^2 + 916*b*c^2*x^4 + 650*c^3*x^6)) + 20*a*b*(7*b^2 - 44*a*c)*Sqrt[(b - S
qrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*
a*c])]*AppellF1[1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])] +
4*(21*b^4 - 157*a*b^2*c + 260*a^2*c^2)*x^2*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqr
t[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[5/4, 1/2, 1/2, 9/4, (-2*c*x^2)/(b + Sqrt
[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])]))/(16575*c^2*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \left (d x \right )^{\frac {3}{2}} \left (c \,x^{4}+b \,x^{2}+a \right )^{\frac {3}{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x)

[Out]

int((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)*(d*x)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral((c*d*x^5 + b*d*x^3 + a*d*x)*sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (d x\right )^{\frac {3}{2}} \left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(3/2)*(c*x**4+b*x**2+a)**(3/2),x)

[Out]

Integral((d*x)**(3/2)*(a + b*x**2 + c*x**4)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(3/2)*(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^4 + b*x^2 + a)^(3/2)*(d*x)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (d\,x\right )}^{3/2}\,{\left (c\,x^4+b\,x^2+a\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2),x)

[Out]

int((d*x)^(3/2)*(a + b*x^2 + c*x^4)^(3/2), x)

________________________________________________________________________________________